Thursday 6 December 2018

The Polyculture Market Garden Study - Results from Year 4 - 2018

Here are the results from the fourth year of our Market Garden Polyculture Study. This study looks at the differences between growing annual vegetables and herbs in polycultures vs growing them in  traditional blocks.

In this post you will find an overview of the trial garden and the polycultures we are growing, a description of what we record and the 4th year results from the trial. You can find results from previous seasons here.



First of all we'd like to say a huge thank you to the team of volunteers that joined us for the study this year and that make it possible for us to carry out our experiments and research. It was a pleasure to work together with you :) Thank you Victoria Bezhitashvili, Angela Rice, Malcolm Cannon, Elise Bijl, Alex Camilleri, Daniel Stradner, Emilce Nonquepan, Ezekiel Orba and Chris Kirby Lambert.

It was a great a mix of people from all over the world including university students, a crypto fund manager, ex-nintendo web editor and market gardeners. Thank you all for your valuable input, it was our pleasure to host you and we look forward to seeing you again some day.     


The Polyculture Study 2018 Team 

Garden Overview 

Location: Bulgaria, Shipka
​Climate: Temperate
Köppen Climate Classification - Dfc borderline Cfb
USDA Hardiness Zone: 5b - 7a
Latitude: 42°
Elevation: 565 m
Average Annual Rainfall: 588.5 mm
Prevailing Wind: NW & NE
Garden Name: Aponia - Polyculture Market Garden


The six longer beds in the left hand corner of the photo on the right (the Aceaes) are the trial beds, the focus of this study.You can find the location of the Polyculture Market Garden on google maps here (labelled as Aponia on our Project map)


Garden area: 256.8 m2
Cultivated beds area: 165.6 m2
Paths: 50 cm wide - 91.2 m2
Bed Dimensions - 23 m x 1.2 m  Area - 27.6 m2 per bed
Number of beds: 6


Study Area Path and Bed Layout


The beds are named after common vegetable families in order to familiarize participants with the use of Latin and introduce them to some major plants families. The bed names do not correspond to what is planted in the beds.




A quick intermission just to let you know we've revamped our Online Store where you can find Forest Garden/ Permaculture Plants, Seeds, Cuttings, Bulbs, Rhizomes and Polyculture Multi-packs along with digital goods and services such as Online Courses, Webinars, eBooks, and Online Consultancy and finally we've added a Bulk Fruit and Nut Tree order form for Farms, Orchards, Nurseries, and Large Regenerative Landscape Projects. If there is anything in the store you would like to see but is not there, please let us know. We hope you enjoy the store and find something you like :) It's your purchases that keep our Project going. Thank you. Enter Our Store Here

Plants, Seeds, eBooks, Consultancy, Bulk Fruit and Nut Tree Orders for Permaculture, Polyculture, Forest Gardens and Regenerative Landscapes.

The Polycultures 


We experiment with many polycultures and have developed a categorization system for ease of reference.  They are categorized by life cycle i.e annualperennial or combi  (annuals and perennials) and further categorized by function. i.e supportinfrastructure or production. Often a polyculture will provide multiple functions, but the primary function is what sets them to each category. I give all our polycultures nicknames. For example, all polycultures in the annual and production category are named after Stoic Philosophers.

The study is based on polycultures Zeno and Epictetus - both are  annual/production polycultures. As we are looking to see how polycultures compare to conventional growing we also include a control for the Zeno polyculture  i.e. the same crops from Zeno but planted in a more conventional block pattern.  In the below illustration you can see the planting plan of the trial beds.



We scaled down to one bed of each polyculture and one bed of control for Zeno this year as opposed to the usual two of each as seen above. We have extrapolated from the data we recorded from each bed to keep the results comparable to the previous years. 


Polyculture Zeno


We've been growing Zeno in the garden for around 10 years now. It's been very successful in our home gardens and in 2015 we scaled it up for the market garden.

Photos from Zeno Polyculture
For more info on plant spacing, management and maintenance of this polyculture see a previous post here.

Zeno Plant List  - The following plants and cultivars were used in this polyculture;

Tomato - Solanum lycopersicum 'Tigerella'
Tomato - Solanum lycopersicum 'Currant Sweet Pea' (not included in records)
French Beans - Phaseolus vulgaris 'Cobra'
French Beans - Phaseolus vulgaris - Local
Courgette - Cucurbita pepo 'Black Beauty'
White Bush Scallop - Cucurbita pepo
Butternut Squash - Cucurbita pepo 'Waltham Butternut'
Basil - Ocimum basilcium 'Napoletano Bollosi'
Pot Marigold - Calendula officinalis 

Zeno Planting Scheme  


Zeno - Vegetable and herb polyculture/guild 6.5 m section of  planting scheme 

Zeno Control 


The control includes all of the above plants but planted in blocks along the bed (see below). We want to see how the two planting schemes compare, i.e. whether or not the polyculture will produce more and the difference in the amount of time needed to cultivate the different layouts. The fertility inputs for both beds are the same.



Polyculture Epictetus 


This is the fourth year we have tried this polyculture. It's basically a strip pattern of various vegetables from different plant families arranged to reduce pests and diseases, optimize space and nutrient share whilst respecting the individual plants needs for space and light. 

Epictetus Polyculture

Epictetus Plant List  - The following plants and cultivars were used in this polyculture;

Beetroot - Beta vulgaris ' Bolthardy'
Dwarf Bean - Phaseolus vulgaris 'Rocquencourt'
Kale -  Brassica napus 'Siberian'
Parsnip - Pastinaca sativa ' White Gem'
Turnip - Brassica rapa subsp. rapa 'Milan White'
Swiss Chard - Beta vulgaris subsp. cicla 'Rainbow Mix' (self seeded)
Pot Marigold - Calendula officinalis (self seeded)

Epictetus Planting Scheme


Example of Epictetus - Vegetable polyculture/guild - 6 m section of  planting scheme

The table below shows the plant species composition of each of the beds including the dates that the plants were sown or planted.

We have not included a list of native wild plants that are encouraged to grow around the perimeter of each bed that we mow and apply as mulch to the beds during the growing season.






What we Record - Inputs 


Time Input - We record how long it takes to develop, maintain and manage the garden. The time is recorded for each task starting from sowing the seeds, preparing the beds, planting and caring for the plants, harvesting, preparing for market and packing away. The time taken for each task is rounded up or down to nearest minute. Nearly all of the records are based on 2 people carrying out each task unless otherwise stated in the record sheet. 

Fertility Inputs  -  All fertility additives are recorded including; seed sowing mediums, composts, mulch, and ash.

Ash being applied to the beds in early April at an approx. rate of 100 -120 g per m length  (a Fiskar Hand Trowel full per m length of bed)


Financial Inputs - Costs  - The costs associated with the garden are recorded.  We do not cost the time spent on the garden but do provide estimates of the time the activities take. Set up and tool costs were included in the first year records. This year we only recorded operating costs. 

N.B. We eliminate many costs by growing our own plants from seed, making composts and sowing mediums, growing summer and autumn mulch and saving seeds. We also provide our own support stakes from trees grown on site for the crops.

Seedling Beds 

What we Record - Outputs 


Crop Yields - All produce is weighed directly after harvest. The produce is recorded into two categories, fit for market and fit for processing.

Polyculture Yields


Financial output - Profit -  The market value of the produce is estimated based on the average prices we were receiving from local buyers, veggie boxes and Trustika buyers club in Sofia.

N.B. We do not sell all of the produce from the garden. Some of the produce is consumed by the team or preserved.

What we Record - Surveys 


Soil Analysis - Each spring and autumn we obtain a soil sample and send it to NAAS of the Ministry of Agriculture and Food. To take a sample we take approx. a hand trowel full of the top 20 cm of soil from 8 random areas from the beds, mix it together and send 400 g "bagged and tagged" to the lab the same day.


Physical Analysis -  Each spring the team carry out a series of 9 tests that are designed to provide an indication of soil health based on observable physical properties of the soil. It's a soil management tool developed by farmers for farmers to track the developing health of soils.  We have slightly modified the test for our purposes.

Regenerative Landscape Design Course participants working through the soil health test cards


Invertebrate Survey -  Entomologist Chris Kirby-Lambert undertook three surveys in the gardens. You can find his Outline of Invertebrate Diversity Monitoring Project here We are looking forward to see the results during the winter once the invertebrates have been identified and recorded.


A sample of invertebrates from the gardens- Photos by Chris Kirby-Lambert   

Pest and Disease - Thanks to Victoria Bezhitashvili, who joined us for the study this year, we also have a general record of some of the pests and diseases in the vegetable garden this year. You can find Victoria's observations here.

Results 


We'll start off by looking at the results from the soil analysis and soil health tests, then look at the results for each polyculture and finally finish up with the overall garden results.

Soil Results - Mineral Analysis 


Each spring and autumn we take soil samples and send them to NAAS of the Ministry of Agriculture and Food. The sample is taken before we add any fertility in March at the beginning of the season.

The first sample taken in March 2015 in the table below is the base sample taken before work in the garden began.



2015
March (before adding compost)pH (KCI)N03N NH4NP205K20
5.6915.42.8916.313
November (after final harvest)pH (KCI)N03N NH4NP205K20
6.4416.24.4543.914.4
2016
Nitrogen mg/kgPhosphorous - Potassium mg/100g
March (before adding compost)pH (KCI)N03N NH4NP205K20
6.654.435.798825.2
November (after final harvest)pH (KCI)N03N NH4NP205K20
6.618.173.8344.122.1
2017
Nitrogen mg/kgPhosphorous - Potassium mg/100g
March (before adding compost)pH (KCI)N03N NH4NP205K20
6.7325.14.8514739.6
2018
Nitrogen mg/kgPhosphorous - Potassium mg/100g
March (before adding compost)pH (KCI)N03N NH4NP205K20
6.749.535.313022



Soil Results - Soil Health Card 


This year's soil health card test scored 63.9 - a small decrease from last year's test of 65.6. The highest score obtainable for this test is 88.

You can find the full results from 2015 - 2018  in the spreadsheet 2018 Annual Polyculture Market Garden Study - Published Records - Sheet 6.Soil Test Cards

Should you wish to use this soil card you can download the Soil Health Card forms with instructions on how to carry out the tests here.


Inputs and Outputs - Epictetus 



The total amount of time spent on Epictetus was 25 hrs. The time inputs are recorded into different categories as seen below.



Task Time in mins
Fertility72
Planting /Sowing 320
Garden Care 592
Irrigation 180
Harvesting 170
Propagation 170
Total hrs 25 hrs

The fertility inputs on Epictetus were as follows:


Fertility InputsTotal Quantity
Mulch - Lawn Mower Clipping540 L
Mulch - Spot Mulching1 Bale
Wood Ash6.720kg
Seedling mix for Beans14 L
Compost planting out Kale30 L
Compost for sowing beetroot strips100 L
Seedling mix for Sowing Parsnips and Beetroots75 L
Compost for Propagation90L
Seedling Mix for Propagation87 L
Compost added to beds460 L

The yield outputs for Epictetus totalled  68.05 kg of produce. This is around 1.23 kg of produce per m2.   



Crop Weight in g per bed
Dwarf Beans (Fresh) 4255
Kale 4385
Chard 1340
Beetroot 14380
Parsnip 8740
Turnip 925
Total 68.05 kg 


N.B At the time of publishing this post (03/12/18) there are still parsnips and kale, the yields of which have been estimated for these records.


Inputs and Outputs - Zeno 




The amount of time spent on Zeno was 36 hrs. 




Task Time in mins
Set up222
Planting /Sowing 322
Garden Care 595
Irrigation 180
Harvesting 600
Propagation 245
Total hrs 36

The fertility inputs on Zeno were as follows:



Fertility Inputs
Item
Total Quantity
Strawbales31
Compost for
Tomatoes (L)
17.6 L
Seedling Mix
for Squash (L)
10.4 L
Seedling mix for Beans (L)13.2 L
Wood Ash kg6.72 kg
Mulch - Lawn Mower Clipping (L)540 L

The yield outputs for Zeno totalled 237.23 kg of produce - 4.3 kg per m2.


Crop Weight in g
Tomatoes 20640
Tomatoes - (Processing)1770
Beans 33140
Courgette42425
Tomato (projected) 20640
Basil995
Total 237.23kg 


Inputs and Outputs - Zeno Control


The amount of time spent on Zeno Control was 35 hrs and 20 mins.

Task Time in mins
Set up318
Planting /Sowing 444
Garden Care 333
Irrigation 180
Harvesting 600
Propagation 245
Total hrs 35 hrs 20 mins 

The fertility inputs on Zeno control were as follows:


Fertility Inputs
Item
Total Quantity
Strawbales31
Compost for
Tomatoes (L)
17.6 L
Seedling Mix
for Squash (L)
10.4 L
Seedling mix for Beans (L)13.2 L
Wood Ash kg6.72 kg
Mulch - Lawn Mower Clipping (L)540 L


The yield outputs for Zeno totalled 191.57 kg of produce - 3.47 kg per m2.



Crop Weight in g
Tomatoes 11895
Tomatoes - (Processing)2450
Beans 23770
Courgette41880
Tomato (projected) 11895
Basil 3895
Total 191.57 kg 

Some of the "time" categories were difficult to assign to each polyculture so I clumped them together into a general task category. It's mainly the time preparing the produce for market as well as soil analysis, initial propagation tasks and end of season tidying up and packing away of the garden.



General Tasks
Task Time in mins
Fertility24
Analysis 10
Set up180
Market Prep2400
Mowing 540
Total hrs 52 hrs 30 mins  



Zeno Polyculture vs the Control 





This year's results show the polyculture outperforming the control in yield by approx 46 kg and taking approx. 45 minutes longer to manage.

This year's results 


Zeno Control
Total time 36 hrs 5 min35 hrs 20 min
Total Produce 237.23 kg 191.57 kg 


Last year's results 

ZenoControl
Total time37 hrs 5 min37 hrs 30 min
Total Produce154.429 kg140.670 kg 



You can find the above results in the spreadsheet 2018 Annual Polyculture Market Garden Study - Published Records - Sheet 9. Inputs and Outputs per Trial. For date stamped harvest records for Zeno see here and for Epictetus see here.


Inputs and Outputs -  All Beds 



Aponia - The Polyculture Market Garden 


The amount of time spent on all beds was 149 hrs.



Time
Tasks MinutesHours
Fertility961.6
Analysis 100.16
Set up72012
Market Prep240040
Mowing 5409
Planting /Sowing 108618.1
Garden Care 152025.3
Irrigation 5409
Harvesting 137022.8
Propagation 66011
Total time input 149 hrs 

 % of 149 hours spent on various activities in the market garden.

The fertility inputs for all beds were as follows:


Fertility Inputs
Total inputs for garden
Strawbales63 bales
Compost1205 L
Wood Ash20 kg
Sieved Compost
/River Sand 50 /50 
224 L
Lawn Clippings1620 L

The yield outputs for all beds totaled 498.84 kg of produce or 4.51 kg per m2. 






Produce all beds
Product Weight in gAverage weight in
g per m 2
Dwarf Beans (Fresh) 8510154.17
Kale 8770158.88
Chard 268048.55
Beetroot 28760521.01
Parsnip 17480316.67
Turnip 185016.76
Tomatoes 1301401178.80
Tomatoes - (Processing)844076.45
Beans 1138201030.98
Courgette1686101527.26
Basil978088.59
Total kg498.84




Some shots of the market garden


Results in Summary 


The garden produced just under half a ton of produce from a cultivated area of 165.6 m2.

The time spent on the garden was 149 hrs from sowing the first seeds indoors in February to packing up in late October.

The fertility inputs of the garden were 63 Straw bales, 1205 L of compost. 20 kg of wood ash, 224 L of sowing medium, 1620 L of lawn clippings.

Comments on Results 


Time Input  
  • Not included in the records were other tasks carried out around the site such as making compost, harvesting stakes and support sticks, establishing beneficial habitat such as wildlife ponds, hedgerows/stick piles. 
  • The time for preparing the produce for market i.e quality control, packaging and delivery, was estimated at 2 hrs per week per culture. 
Financial Inputs - Costs 
  • Not included here are the set up costs for the garden. These costs were included in the first years results. The costs recorded here are the annual operating costs which is basically the cost of seed, and fuel,oil and maintenance for the lawn mower.
Financial Output - Income 
  • A polyculture market garden should have a polyculture of revenue. Our study currently focuses on annual vegetable production. We chose to begin our study of annual vegetables as it is the most accessible practice to most people requiring the least amount of investment making it ideal for a novice or curious grower. This year we have started planting up various perennial polyculture trails in our new garden Ataraxia. You can find out more about these trials here  

Perennial Polyculture Trials in Ataraxia

 Other potential revenue from the Polyculture Market Garden includes perennial cropsplant nursery, adding value to produce and courses and training. We plan to add a record of these activities to represent better the financial potential of a Polyculture Market Garden.   


Estimated Harvests

At the time of writing this report there are still crops growing in Epictetus. We estimated the harvest weights of the remaining crops based on what we had already harvested.


Epictetus bed with Parsnips and Kale yet to be harvested. These can remain in the beds until the new year.


Considerations:- 
  • We usually aim to grow at least 5 different tomato cultivars but this year we only used 2 cultivars and one of them was cultivar 'Currant Sweet Pea'. This was a mistake and although they performed very well in the gardens and are very tasty they are ridiculously small and for this reason we decided not to include them in the weight records. Instead we used the Tigerella yields to provide an estimated forecast of what we may have harvested.
  • We usually aim to grow equal numbers of the same cultivar in the polyculture and the control but this year our courgette cultivars were not distributed equally. 
  • The warm and wet summer reduced our irrigation needs significantly this year with only 6 weeks of the season requiring water (aside from watering of the seedlings in early spring) . We did however need to mow the garden more often due the optimal growing conditions.  

N.B. We took base times for the majority of tasks carried out in the gardens in the first two years of the study. These tasks were carried out by a volunteer team that had little or no prior experience in horticulture. An experienced grower or with repeated experience of these cultivation methods should be able to reduce the task times significantly.

You can access the full spreadsheet here that includes all of the data entries and task descriptions. (note there are multiple sheets that can be accessed from the blue tabs running along the top of the sheet).



Regenerative Landscape Design - Online Interactive Course 


Want to learn how to design, build and manage regenerative landscapes?  Join us for our Regenerative Landscape Design - Online Interactive Course from May 1st to Sep 13th, 2023. 

We're super excited about running the course and look forward to providing you with the confidence, inspiration, and opportunity to design, build and manage regenerative landscapes, gardens, and farms that produce food and other resources for humans while enhancing biodiversity.

Regenerative Landscape Design Online Course

You can find out all about the course here and right now we have a 20% discount on the full enrollment fees. Just use the promo code
 RLD2023 in the section of the registration form to receive your discount. 

We are looking forward to providing you with this unique online learning experience - as far as we know, the very first of its kind. If you are thinking of reasons why you should do this course and whether this course is suitable for you, take a look here where we lay it all out. Looking forward to it!


--------------------------------------------------------------------------------------------------------------------------

We offer a diversity of plants and seeds for permaculture, forest gardens and regenerative landscapes including a range of fruit and nut cultivars. We Deliver all over Europe from Nov - March. - Give a happy plant a happy home :)


Our Bio-Nursery - Permaculture/Polyculture/ Regenerative Landscape Plants 

--------------------------------------------------------------------------------------------------------------------------

Support Our Project 




If you appreciate the work we are doing you can show your support in several ways.

  • Comment, like, and share our content on social media.
  • Donate directly via PayPal to balkanecologyproject@gmail.com or via FTX Pay



--------------------------------------------------------------------------------------------------------------------------

Design and Create Webinars - Forest Gardens, Urban Gardens, Permaculture, Regenerative Farming   


We're hosting a range of online learning sessions including how to create habitat to enhance biodiversity, how to design and build a forest garden, polyculture design software tutorials, regenerative farm, and landscape design, urban gardening and much more. If you would like to be notified when our next sessions are coming up please add your email below and hit subscribe and we'll be in touch.




You can also register for our online training, services, and products directly here.


--------------------------------------------------------------------------------------------------------------------------


8 comments:

  1. I am so impressed by how detailed and well thought this study is. Thank you so much for your meticulous work!

    ReplyDelete
  2. Wow, this is great! So nice to see how you record all your information and great to see a positive result clearly coming out in support of your polycultures. Thanks for sharing!

    ReplyDelete
  3. You are doing absolutely great job. Permaculture being a science needs measureable results that confirm that we can feed ourelves without conventional agriculture. Your reports are excellent and inspiring. Thank you very much for sharing this information.

    ReplyDelete
  4. amazing work you are doing!
    the registration link on this site is not working (as in "Registration for our June course is now open with 15% discount ").
    i wish i could be there...

    ReplyDelete
    Replies
    1. Thank you :) and thanks for letting me know about the broken link :) it should be working now. you can also find a link here http://www.balkep.org/deisgnandbuildaforestgarden.html

      Delete