Monday 23 January 2017

The Early Polleniser Polyculture - A Support Polyculture for Orchards, Farms and Gardens

The Early Polleniser Polyculture aims to provide pollination support for farms and gardens, nutritious fruits and nuts, valuable nesting sites for endangered native bees, and spectacular flower displays to shake off the winter blues :)

As the title suggests the primary purpose of the Early Polleniser Polyculture is to provide an early source of pollen/nectar to a wide diversity of pollinating insects. The majority of the plants in this polyculture bloom when there are few other sources of nectar/pollen available. This encourages pollinating insects in and around our gardens to fulfill their vital role when the crops (particularly fruit trees) start to flower in the early spring.

During this post, we'll look at the individual species within the polyculture, (when they flower and fruit), how to pick a location for the polyculture, how to build and manage the polyculture, and some design variations for small gardens and large farms.


The Early Polleniser Polyculture 


Before we go any further I'll quickly clarify the meaning of the term Polleniser.

A polleniser (sometimes pollenizer, pollinizer, or polliniser) is simply a plant that provides pollen. The word pollinator is often mistakenly used instead of polleniser, but a pollinator is a biotic agent that moves pollen, such as bees, moths, bats, and birds. Bees are thus often referred to as 'pollinating insects'.

 Bee (Pollinator) and flowering plant (Polleniser) 


Flowering Period 


All species included in the polyculture apart from Trifolium repens - White Clover, flower during the months of January - March and provide valuable pollen or nectar forage for bees and other pollinators during this period.

Early Polleniser Guild species in flower 


Flowering Periods
Pollen/Nectar Availability
Species JanFeb MarSpecies JanFeb Mar
Cornus mas
Cornelian Cherry
Bellis perennis
Daisy
Corylus avellana
Hazelnut
Primula vulgaris
Primrose
Mahonia aquifolium
Oregon Grape
Scilla bifolia
Alpine Squill
Chaenomeles speciosa
Japanese Quince
Galanthus gracilis
Snowdrop
Alnus cordata
Italian Alder
Corydalis bulbosa
Crested Lark



Design Considerations



Design Goals -  As well as pollination support, wildlife habitat, and fruit production the design goals include 
  • For the polyculture to be functional on marginal sites i.e shady areas, low fertility soils, and areas exposed to wind. The early polleniser guild is primarily a support polyculture with the primary function of providing main crops with pollination support so we may not want to allocate the most productive land to it. 
  •  That the polyculture should have relatively low time/cost inputs. Once established the polyculture should require little to no external fertility and approx. 5-7 hrs of maintenance per year in the late autumn. (not including harvest times). Maintenance and management of this polyculture are further discussed below.  
  • That the polyculture can be of use on a small and broad scale. The design presented above represents one unit and can work well "stand-alone" in any garden. Multiple units of this polyculture can also be used in orchards and farms to provide better pollination coverage for the crops. (see layout options below)

Light and Aspect  - All of the plants included tolerate some shade or utilize light when other plants are not in demand of it. The polyculture can therefore be positioned on marginal areas with lower light levels whilst still serving a purpose, however, if you would like to obtain maximum pollinator attraction and a higher yield of fruits and nuts, choose a site with at least 6 - 8 hrs a day and orientate from east-west.

Water - Optimal irrigation is key to healthy and productive plants. This polyculture is not well suited to semi-wetlands and areas with a high water table and will not thrive in very dry areas with no access to irrigation. In dry climates, irrigation will be essential but selecting a position for the polyculture that maximizes the absorption of rainfall will help considerably and can be achieved by planting on contour and using simple earthworks to keep rain water around the root zones of plants.

N.B. All of the plants are relatively drought tolerant but the fruiting plants will not be high yielding without proper irrigation.

Access - Access from within the polyculture is required for pruning, weeding, and harvesting. Two 50 cm wide paths running within and parallel to each other provide this access. The periphery of the polyculture should also be accessible from the outside.  


Pollinator Habitat - Native bees are very important pollinators and are some of the most endangered species in our ecosystems. Including a habitat for the bees to nest as well as providing good quality forage is essential,  accordingly, this polyculture includes bee nesting habitat, but having other such habitats around a site is recommended.

Species Selection - Our plant selection takes into account the following;
  • Climatic compatibility with the site
  • Drought tolerance
  • Shade Tolerance
  • Early nectar/pollen provision
  • Other benefits to wildlife and production for humans
  • Flowering periods do not have a significant overlap with crops on the site.  
  • Shrub species that respond well to regular pruning/coppicing   

Proximity to crops - Bees will forage where high-quality food is available and presumably shorter foraging trips are both safer and more energy-efficient for all bees. Studies show that Honey Bees - Apis spp. will forage many km away from nesting sites. Bumblebees - Bombus spp. and most solitary bees will typically forage much shorter distances, according to some reports 100 m - 800 m.

Bees from the gardens (photos by Peter Alfrey)

Given that there is little consensus within studies of pollinator foraging behavior, it's difficult to state how far from the crops and to what density this polyculture should be used to achieve the best pollination results. As a presumptive guide, in areas where suitable forage and nesting habitat is lacking assume a beneficial radius of 100 - 300 m, and in areas where there are lots of established early forage and nesting sites assume a beneficial radius of 500 m - 1000 m.  You can never really have too much early pollinator forage available, but you can have too little. Priorities of budget and time, and the crops that are being grown are other factors that will guide unit quantity and crop proximity decisions.

It's worth noting that plants are in competition for pollinator's attention and for this reason the flowering period of the plants in the polyculture does not overlap significantly with crop plants.

Location/Layout  -  The polyculture unit presented above can work well as a stand-alone unit in any garden. Multiple units of this polyculture can also be used in orchards and farms to provide better pollination coverage for the crops. Below you can find three suggested layouts for the broad-scale application of this polyculture 1 Border, Island, and 3 Alley.


1. Border Layout - The polyculture can be planted on the inside of a fence or outside of a track to form a "wrap around" for the entire orchard/market garden etc. or for subdivision boundaries within a site.  Being composed of shade-tolerant plants the polyculture will, to some extent, function regardless of aspect. Each unit as pictured above can be repeated to form a border planting. 



2. Island Layout -  The island layout intersperses the units around the site. For already developed sites the islands can be positioned in difficult-to-access nooks and corners, shady spots and areas of marginal value, or on the periphery of crops that will benefit the most from enhanced pollination.      



3. Alley Layout - The alley layout entails planting the polycultures in an alley cropping or orchard system at intervals among the main crops. For example, an apple and pear orchard may have every 10th row composed of early polleniser units.



So let's take a closer look at the species involved and the management and maintenance tasks required for this polyculture


Want to learn more about Regenerative Landscape Design? Join The Bloom Room!

The Bloom Room is designed to create a space for more in-depth learning, for sharing projects and ideas, for seeking advice and discovering opportunities.

Ultimately, it aims to build a more intimate, interactive, and actionable relationship between members, a way for the Bloom Room community to support each other’s projects and learning journeys, and to encourage and facilitate the design, build, and management of more regenerative landscapes across our planet.

What you can expect as a member of the Bloom Room

As a member of the Bloom Room you can expect;

  • Access to an interactive forum where you can ask questions,  direct what type of content you would like to see as well as share your own content and projects.

  • Monthly live session featuring general Q&A and tutorials on design software for creating and presenting polycultures.

  • Live session every month for members to showcase your projects, plans, designs, and gardens, with guest speakers from the community.

  • Full Access to all of the content on Substack

  • Future opportunities to join our Global Regenerative Landscape Design and Consultancy Service, with potential roles for those with the will and skill to join our design team.

  • An opportunity to take part in the group ownership of a Regenerative Landscape. You will find more details on that here.

Become a paid subscriber to our Substack to join. The annual subscription is currently $70 and the monthly subscription is $7 (monthly subscription excludes discounts for products and services) . You can join herewe look forward to meeting you!


The Polyculture Components 


I've divided the polyculture into 5 main components based on the purpose that each component serves.

  1. Fruiting Trees and Shrubs
  2. Ground Cover
  3. Early Flowering Bulbs 
  4. Fertility Plants 
  5. Pollinator Habitat 

Welcome to our Online Store where you can find Forest Garden/ Permaculture plants, seeds, bulbs, and Polyculture multi-packs along with digital goods and services such as Online Courses, Webinars, eBooks, and Online Consultancy.  We hope you enjoy the store and find something you like :) It's your purchases that keep our Project going. You can also find our full list of trees. shrubs and herbs for forest gardens on our website here 


1. Fruiting Trees and Shrubs - The Polyculture Components 


The fruiting trees and shrubs component include Cornus mas and Corylus avellana in the upper canopy, and Chaenomeles speciosa and Mahonia japonica in the lower canopy/shrub layer and are the main productive units in the guild. With good cultivar selection, these plants can provide yields of excellent fruits and nuts.


Fruiting Trees and Shrubs
SpeciesFamily LayerCultivars USDA Hardiness Soil pH Space (HxW)Light Root Behaviour
Cornus mas
Cornelian Cherry
CornaceaeCanopy available 5Acid
Neutral
Alkaline
5m x 5mFull Sun
Med Shade
Reticulated root ball with deep taproot
Corylus avellana
Hazelnut
Betulaceae Canopy available 4 - 8Acid
Neutral
Alkaline
6m x 3mFull Sun
Med Shade
A spreading root system associated with spreading basal growth
Mahonia aquifolium
Oregon Grape
BerberidaceaeShrubn/a5Acid
Neutral
Alkaline
2m x 1.5mFull Sun
Med Shade
Full Shade
Deep anchor roots
Suckers freely
Chaenomeles speciosa
Japanese Quince
RosaceaeShrubavailable 5Acid
Neutral
Alkaline
3m x 5m Full Sun
Med Shade
Full Shade
Roots extending deep into the subsoil
Suckers freely 


Cornus mas - Cornelian Cherry


Species Overview - Cornus mas is one of my favorite plants. The hum of the bees under our Cornus mas trees on a sunny day in late winter is just one of the reasons I love this plant.  It's a  medium-sized hardy tree and an excellent polleniser producing a bounty of flowers rich in nectar from Feb - March. The plant is self-fertile and the flowers go on to form wonderful grape-shaped fruits in late summer delicious when fully ripe.

Four seasons of Cornus mas from our home garden.

Uses -  Excellent fruit when ripe and great for making cordial or syrups. Nutritional analysis indicates that Cornelian cherry juices are rich in various essential elements and might be considered an important dietary mineral supplementation. There are some fabulous cultivars available with larger sweeter fruit.
The seeds can be roasted, ground into a powder, and used as a coffee substitute and a small amount of edible oil can be extracted from the seed.  A dye is obtained from the bark and the leaves are a good source of tannin. The wood is very hard, it is highly valued by turners and has a history of use for tools, machine parts, etc. We use the twigs to feed rabbits and goats all year round. 

Biodiversity - One of the earliest trees to flower, attracting a wide range of pollen and nectar-feeding invertebrates from Feb - March. We often see great tits, blue tits, and long-tailed tits in our trees during the winter. I'm not sure whether they are feeding on the buds, dried fruit or perhaps the invertebrates sheltering under the bark and crevices.

For more on this plant see our Cornelian Cherry plant profile . We also have a range of excellent cultivars available

Corylus avellana - Hazelnut


Species Overview - A fast-growing deciduous shrub with rounded leaves, producing yellow male catkins in the early spring followed by delicious edible nuts in the autumn. Typically reaching 3–8 m tall but may reach 15 m. 

Corylus avellana  - Hazelnut 

Uses - One of the finest temperate nuts eaten roasted or raw. The wood from hazel is also commonly used. Soft, easy to split but not very durable it is mainly used for small items of furniture, hurdles, wattles, basketry, pea sticks, etc. The tree is very suitable for coppice. The twigs can be used to feed rabbits and goats all year round The nuts also contain 65% of a non-drying oil that can be used in paints, cosmetics, etc. Finely ground seeds are used as an ingredient of face masks in cosmetics. 

Biodiversity - The pollen-bearing catkins can be available to pollinators from as early as late Jan - late March. Hazel leaves provide food for the caterpillars of many moths. Hazelnuts are used by dormice to fatten up for hibernation and in spring the leaves are a good source of food for caterpillars, which dormice also eat. Hazelnuts are also eaten by woodpeckers, nuthatches, tits, wood pigeons, jays, and a number of small mammals.

For more on this plant see our Hazelnut plant profileWe also have a range of excellent cultivars available

Chaenomeles speciosa - Japanese Quince


Species Overview - A thorny deciduous or semi-evergreen shrub native to eastern Asia, usually growing to about 2 m tall and generally exhibiting a rounded outline, but is somewhat variable in form. The plants establish a very dense crown with a tangled jumble of branches that are either spiny or with spurs. The flowers come before the leaves and are usually red, but maybe white or pink. The fruit is fragrant and looks similar to a small apple although some cultivars have much larger pear-shaped fruits. The leaves do not change color in autumn.

Chaenomeles speciosa - Japanese Quince 

Uses - The fruits don't make great eating and are generally extremely hard but following a cold spell I found the Japanese Quince softened enough to squeeze like a lemon, and the juice being very acidic makes them an excellent alternative to lemon juice. Another plus for this fruit is that they have a delicious and somewhat addictive aroma that lingers around for a few days resembling that of pineapples, lemons, and vanilla. We leave the fruits in the car or around a room to act as a natural air freshener.

Biodiversity - The flowers are attractive to a wide range of pollen and nectar-feeding invertebrates from March- April, sometimes in February. With regular pruning the shrubs become dense providing suitable nesting habitats for birds such as wren - Troglodytes troglodytes, chiffchaff - Phylloscopus collybita and robin - Erithacus rubecula. The diets of these birds include some common vegetable pests and can help keep pest populations in check.

For more on Chaenomeles spp. see our previous blog article here. and the full plant profile here.


Mahonia aquifolium - Oregon Grape


Species Overview - A great little shade-tolerant evergreen shrub growing to 1 m tall by 1.5 m wide that can cope with most soils and thrive in shady spots where many other plants succumb. It is resistant to summer drought and tolerates wind. The plant produces dense clusters of yellow flowers in early spring, followed by dark bluish-black berries. Once the plant gets going it's very vigorous and produces many suckers.

Mahonia aquifolium - Oregon Grape

Uses -  The small purplish-black fruits can be used to make jelly or juice that can be fermented to make wine. The inner bark of the larger stems and roots of Oregon grapes yield a yellow dye; the berries give purple dye. The holly-like evergreen leaves are sometimes used by florists to add to bouquets. It makes a great understory shrub for densely shaded areas.

Biodiversity - Excellent early-flowering nectar source for bees and bumblebees.  The nectar and pollen may be taken by blackcaps, bluetits, and house sparrows. Berries are eaten by blackbirds and mistle thrushes.  Good caterpillar food plant.

For more on this plant see our Mahonia aquifolium plant profile

Fruiting Trees and Shrubs - Unit Management 


The table below indicates the number of trees and shrubs per unit and some information on how to establish and maintain this component of the polyculture.

Fruiting Trees and Shrubs - Management
SpeciesProduceQuantity per unitYield at maturityMaintenanceHarvest PeriodEstablishing
Cornus mas Fruit1 plant50+kgPrune- Lift lower branches to allow light in bottom layersAug-Sep
Planting can take place from October to March
Apply top dressing of compost and mulch
Keep area around plants weed free for first two years
Irrigate when dry
Corylus avellanaNut1 plant5 - 10 kgRemove basal growthAug-Sep
Chaenomeles speciosaFruit2 plants2-3 kgPrune to shape, Cut back suckers and use for mulchSep -Oct
Mahonia japonicaFruit2 plants500gRemove basal growth and use for mulch Aug - Sep

Planting scheme for Fruiting Trees and Shrub component


2. Ground Cover - The Polyculture Components 


The ground cover plants include Primula vulgaris and Bellis perennis, both herbaceous perennials with low growing and spreading habits that over time should form large patches of cover under and around the shrubs and trees. A ground cover can prevent unwanted plants from moving in and protects the soil from erosion.


Groundcover
SpeciesFamily LayerCultivars USDA Hardiness Soil pH Space (HxW)Light Root Behaviour
Primula vulgaris
Primrose
PrimulaceaeGround n/a 5Acid
Neutral
Alkaline
0.3m x 0.3m Full Sun
Light Shade
Clump forming and slowly spreading
Bellis perennis
Daisy
Asteraceae or CompositaeGround available 4Acid
Neutral
Alkaline
0.2m x 0.2mFull Sun
Light Shade
Shallow rooted, Rhizomatous 


Primula vulgaris


Species Overview - A herbaceous perennial, loving cool, damp banks and glades, and thriving in coppice woodland where they can form a stunningly attractive carpet. They like wet soil best, with lots of shade in the summer. The drier and hotter the climate, the more they need shade. Summer drought is not a big problem as long as they get plenty of moisture in autumn and the first part of the year. 

Primula vulgaris - Primrose ground cover under a Cornus mas in our garden

Uses: Both flowers and leaves are edible, the flavor ranging between mild lettuce and more bitter salad greens. The leaves can also be used for tea, and the young flowers can be made into primrose wine.

Biodiversity - Primroses are one of the earliest spring flowers. They may be found flowering in warm sheltered nooks as early as the end of January, although most flower from March to May. Because they flower so early in the year, they provide a vital source of nectar at a time when there are few other flowers around for insects to feed on such as adult Brimstone butterflies which have hibernated over the winter and often emerge on warmer winter days.

For more on this plant see our Primula vulgaris plant profile

Bellis perennis 


Species Overview - An abundant, small, low-lying herbaceous perennial plant with white flowers with yellow centers and pink flecks, that appear most of the year, except in freezing conditions. The plants habitually colonize lawns and grassland. 

Bellis perennis - Daisy growing in our lawn 

Uses: May be used as a potherb and young leaves can be eaten raw in salads or cooked, noting that the leaves become increasingly astringent with age. Flower buds and petals can be eaten raw in sandwiches, soups, and salads. It is also used as a tea and as a vitamin supplement. Medicinally, the plant is known for its healing properties and can be used on small wounds, sores, and scratches to speed up the healing process. The spreading habit of the plant makes it a good ground cover option.

Biodiversity - A valuable addition to grassland areas managed for wildflowers and wildlife attracting a good deal of attention from pollinators when little other forage is available.

For more on this plant see our Bellis perennis plant profile 

Ground Cover - Unit Management 


The table below indicates the quantity of groundcover plants per unit and some information on how to establish and maintain this component of the polyculture.


Ground Cover - Management
Species Produce Quantity per unitYield at maturity Maintenance Harvest Period Establishing
Bellis perennis Edible flowers 10 plants n/an/aAll year
Planting can take place from September to June
Keep weed free for the first year - Irrigate when dry
Primula vulgaris Edible flowers 10 plants n/aDivide when crowded Feb - April

Planting scheme for ground cover is mixed patches of the species between the shrubs and trees


3. Early Flowering Bulbs - The Polyculture Components


The early flowering bulbs flower in January - February taking advantage of the light pouring through the leafless tree and shrub canopy. These plants offer nectar and pollen rewards to pollinators venturing out during the warmer late winter days. The bulbs also serve to retain nutrients in the rhizosphere, the top 10- 20 cm of soil where most plants feed and the majority of the microbiological activity takes place. They do so by uptaking nutrients that would otherwise wash through the soil with the winter rains and snow melt and fixing these nutrients to their leaf and flowering tissue. When the plants wither and decompose in the spring just when the other plants awaken from winter dormancy, the tissue is assimilated back into the rhizosphere, eventually becoming available to the other plants. You can consider these plants a nutrient store preventing minerals from leaching out of the soil and locking them away for when they are needed later. We've selected 3 native plants commonly found in the woodlands and hedgerows in our area.


Early Flowering Bulbs
SpeciesFamily LayerCultivars USDA Hardiness Soil pH Space (HxW)Light Root Behaviour
Scilla bifolia
Alpine Squill
AsparagaceaeUnderground available 5Acid
Neutral
Alkaline
0.2m x 0.1mFull Sun
(winter)
Short fleshy root systems - good for the early winter utilisation of nutrients in the soil that would otherwise wash away with snow melt and rains
Galanthus gracilis
Snowdrop
AmaryllidaceaeUnderground available 5Acid
Neutral
Alkaline
0.2m x 0.1mFull Sun
(winter)
Corydalis bulbosa
Crested Lark
Papaveraceae Underground available 5Acid
Neutral
Alkaline
0.2m x 0.1mFull Sun
(winter)


Scilla bifolia - Alpine Squill



Species Overview - A herbaceous perennial growing from an underground bulb. A native to Europe and western Russia south through Turkey to Syria. The plant is found in shady places, woods of beech or deciduous trees, and mountain grasslands.

Scilla bifolia - Alpine Squill growing through the mulch on the forest floor

Uses: I could not find much info on this elegant little beauty. It grows all over the woodlands in our region and we inherited many patches in our garden perhaps cultivated from the wild by previous owners or remnants from the wild past of the land.  I did find one report stating that ingestion may cause severe discomfort so I doubt they taste as good as they look :)

Biodiversity - Early source of nectar for pollinators when little else is in flower

For more on this plant see our Scilla bifolia plant profile.

Galanthus gracilis - Snowdrop


Species Overview -  Early spring flowering bulbs, even sometimes emerging through the snow in the late winter, providing a very welcome source of food for bees and other pollinators. Popular as an ornamental plant, snowdrops are often cultivated in gardens and parks but are also a great choice for light or deep woodland ground cover.

Galanthus gracilis - Snowdrop from our garden

Uses:  The plant has insecticidal properties and can be used against pests in the orders Coleoptera (beetles), Lepidoptera (butterflies and moths), and Hemiptera (true bugs including aphids and leafhoppers). Common snowdrop contains an alkaloid, galanthamine, which has been approved for use in the management of Alzheimer’s disease in a number of countries. The plant and bulb are poisonous to humans and should not be consumed.


Biodiversity:  Snowdrops are pollinated by bees during February and March.  The miniature white seeds produce substances that attract ants. These insects collect and transfer seeds via underground tunnels.

For more on this plant see our Galanthus gracilis plant profile 

Corydalis bulbosa - Spring Fumewort


Species Overview - A subtle but stunningly beautiful bulbous perennial, blooming from February. A spring ephemeral with foliage that appears in spring and dies down to its tuberous rootstock in summer. The plant spreads and forms a pretty white-to-purple carpet.

Corydalis bulbosa growing through the forest mulch 

Uses - A good choice for borders, under-planting, ​or the woodland garden. Fumewort has been used as a painkiller in Chinese medicine for over 1,000 years. The root or tuber is used internally as a sedative for insomnia and as a stimulant and painkiller, especially in painful menstruation or traumatic injury. Caution should be exercised when using this plant for medicinal purposes as the plant is reportedly toxic.

Biodiversity - A reliable and early source of food for bees.  Corydalis spp. are used as food plants by the larvae of some Lepidoptera species (butterflies), especially the clouded Apollo.

For more on this plant see our Corydalis bulbosa plant profile 

Early Flowering Bulbs - Unit Management 


The table below indicates the quantity of early flowering bulbs per unit and some information on how to establish and maintain this component of the polyculture.



Early Flowering Bulbs - Management
Species Produce Quantity per unitYield at maturity Maintenance Harvest Period Establishing
Scilla bifolia Flowers 30 bulbs n/a
Divide when crowded
n/aPlant in Spring or Autumn 10-12cm deep
Galanthus gracilis Flowers 30 bulbs n/an/aPlant in Spring or Autumn 10-12cm deep
Corydalis bulbosaFlowers 30 bulbs n/an/aPlant in Spring or Autumn 10-12cm deep

Scattered plantings of early flowering bulbs 


4. Fertility Plants - The Polyculture Components


The fertility plants include two very different nitrogen-fixing species. The first of these is Alnus cordata, a tree that can grow to 25 m high but should be maintained as a small shrub within this polyculture. Trimmed each autumn, the biomass can be applied to the base of the neighboring fruit-bearing plants. The second plant Trifolium repens is a creeping herbaceous perennial that can be sown into the pathways, mowed annually, and applied to the fruiting plants as mulch.


For more on Nitrogen fixing plants and how they work see our previous post here.


Fertility Plants
SpeciesFamily LayerCultivars USDA Hardiness Soil pH Space (HxW)Light Root Behaviour
Alnus cordata
Italian Alder
Betulaceae Shrubn/a5Acid
Neutral
Alkaline
25m x 8mFull Sun
Med Shade
Deep taproot with dense subsidiary rootlets
Trifolium repens
White Clover
FabaceaeGround available 5Acid
Neutral
Alkaline
0.1m x 1mFull Sun
Light Shade
Stoloniferous - Rooting from creeping stems above ground 


Alnus cordata - Italian Alder


Species Overview -  A medium-sized tree growing up to 25 m tall. The leaves are deciduous but with a very long season in leaf, from April to December. Like other members of Alnus genus, it is able to fix nitrogen from the air. It thrives on much drier soils than most other Alders and grows rapidly even under very unfavorable circumstances, which renders it extremely valuable for landscape planting on poor soils and heavily compacted sites.


Uses:   The tree is sometimes used as an ornamental in large gardens and parks for its majestic appearance and fast growth, or as a roadside or street tree, because it establishes rapidly in exposed positions, is reasonably compact, and tolerates dry conditions as well as a dusty atmosphere. It is also commonly grown as a windbreak. Its timber can be used for construction purposes in wet conditions since alder wood is virtually resistant to decay under water. Its poles have been used as foundation poles for the houses and bridges of Venice. It can also be used for firewood.  The plant makes a medium to large bonsai, a quick grower it responds well to pruning with branches ramifying well and leaf size reducing quite rapidly.

Biodiversity - Alnus spp. shed pollen from catkins in late winter and early spring some of which bees and other pollinators feed upon.

Nitrogen Fixing Potential - Alnus cordata is not listed on the USDA database but other species in this genus are classified by USDA as being a HIGH Nitrogen fixer with estimated yields of +160lbs/acre or +72kg/4050m² or 0.018g /m2.

For more on this plant see our Alnus cordata plant profile


Trifolium repens - White Clover 


Species Overview - White clover is a dwarf, prostrate, mat-forming perennial that can spread via stems that freely root along the ground at the nodes. Easily grown in average, medium, well-drained soils in full sun to part shade. Prefers moist soils in light shade, but tolerates full sun and moderately dry soils.

Trifolium repens ground cover 

Uses: White clover has been described as the most important forage legume of the temperate zones. Besides making an excellent forage crop for livestock, clovers are a valuable survival food: they are high in proteins and although not easy for humans to digest raw, this is easily fixed by boiling the harvested plants for 5–10 minutes. Dried flower heads and seedpods can also be ground up into nutritious flour and mixed with other foods or can be steeped into an herbal tea. The plant's ability to spread aggressively by creeping stems makes it good for ground cover and its tolerance of foot traffic makes this my favorite plant for pathways.

Biodiversity -  The plants provide a source of nectar and pollen for a number of native bees as well as the honey bee.

Nitrogen Fixing Potential - The species is classified by USDA as being a HIGH Nitrogen fixer with estimated yields of +160lbs/acre or +72kg/4050m² or 0.018g /m2.

Other sources state up to 545 kg of N per hectare per year is possible.

For more on this plant see our Trifolium repens plant profile.

Fertility Plants - Unit Management 


The table below indicates the number of fertility plants per unit and some information on how to establish and maintain this component of the polyculture.


Fertility Plants - Management
Species Produce Quantity per unitYield at maturity Maintenance Harvest Period Establishing
Alnus cordata Biomass/ N input 4 plants n/aReduce by 50% in the 2nd spring and apply as mulch
Thereafter trim regrowth every autumn and apply as mulch
Planting can take place from October to March
Keep weed free for first two years - Irrigate when dry
Trifolium repensN Input - 0.014g /m2 per year12gn/aMow in the autumn n/aSow 1.5 g /m2 in the spring onto tilled pathways 

Trifolium repens sown into the pathways and Alnus cordata pruned to shrub size 


5. Pollinator Habitat - The Polyculture Components


Pollinators provide an important link in our ecosystems by moving pollen between flowers and ensuring the growth of seeds and fruits. Native bees form the most important group of pollinators and as I'm sure you've heard they're currently threatened by changes in our landscapes, especially the loss of nesting sites. The general desire for neatness results in the removal of bare ground, dead trees, and untidy corners of rough grass—all important nesting sites for bees. Our polyculture design takes this into account and includes some important nesting habitats for the bees, namely logs, bare earth patches, and rock crevices.

Water is also necessary for pollinators and including a small pond will be very beneficial, even essential if the site does not have a water source nearby. For this reason, we've included a small tyre pond in the center of the polyculture.

Tyre pond and log from our Market Garden

Wildlife Habitat - Management
Item FunctionQuantity per unitMaintenance Establishing
Bird nesting boxPest control1Replace when worn Add when Cornus mas is large enough fix a box to the main trunk. 1 - 3 m from ground
Tyre Pond Water1Thin out aquatic plants and clear out dead organic matter annually Dig a 1.10m diameter hole to fit a car tyre , line tyre, add plants and water, line boundary with rocks and plant local aquatic species into the pond
Rock Border with sand infill Bee Nesting Sites
Reptile basking
1Pull weeds from between cracks to allow access to nesting sites Lay a 50cm wide strip of of landscapers mat around the edge of the pond and cover with rocks of various sizes. Include large flat surfaced rocks. Fill the crevices in the rocks with sand
Logs Bee Nesting 1Replace when decomposed Place old logs in a sunny area with a few upright, like dead trees, to ensure some deadwood habitat stays dry.
Drill holes on the southeast side of the log
Bare earthBee Nesting 1m2 move 1m2 mat each year Lay a 50cm x 50cm dark, heavy mat on a patch on ground away from the access routes. Move the mat to a new location when the vegetation has died back, and lightly till the soil.  

Logs, Tyres ponds, Rock borders, and strips of bare earth provide bee nesting sites and beneficial habitat



All components of the Early Polleniser Polyculture

Regenerative Landscape Design - Online Interactive Course 

Want to learn how to design, build and manage regenerative landscapes?  Join us on our Regenerative Landscape Design - Online Interactive Course. We look forward to providing you with the confidence, inspiration, and opportunity to design, build and manage regenerative landscapes, gardens, and farms that produce food and other resources for humans while enhancing biodiversity.

You can find the course details here and at the moment we have a $350 ( 20%) discount for full enrollment to the course. Just use RLD2024 in the promo code  section of the registration form to receive your discount. 


Design Variations 


The plants and habitats in this polyculture can be assembled in many ways. You can consider the plants and habitat listed above as a "palette" from which you can create many forms.

Here are a few variations on the design where space is limited.

The first design is a 20 m2 circle with all of the plantings fitting under the mature canopy of the Cornus mas. It's very similar to the first early polleniser polyculture I designed during the development of a 5 ha polyculture/permaculture orchard  I was working on a few years ago. The plan was to include some early forage perennials and habitat for bees and other pollinators to support the fruit trees and shrubs, and I was pondering how best to integrate these plants. As the design developed it turned out there were odd spaces where the tree alleys converged with access tracks and the headlands. The spaces were not big enough for fruit trees to fit without blocking access. They were quite evenly dispersed across the site and seemed perfect for placing the polyculture.


 Early Polleniser Design - 20 m2    

 Under plantings of the Early Polleniser Design - 20 m2    


The plants can also be planted denser for hedge row plantings and sub-division hedges. The following planting scheme would work well for hedging with a 20 cm strip of flowering bulbs and ground cover running parallel with the hedge. The Cornelian Cherry and Hazelnuts may be left to grow out.


Early Polleniser Hedge - An 8 m stretch of single-row hedging


Here's a list of other species that provide early nectar/pollen rewards to bees and other pollinators. I've not personally grown all of the plants from this list but they seem suitable.




It's well worth remembering that this is not a tried and tested design. Based on our experience and practice we are confident that the polyculture will meet the design goals we have set, but only experience of the living system will reveal the true strengths and weaknesses and where improvements can be made.

Support Our Project 

If you appreciate the work we are doing you can show your support in several ways.

  • Become a member of the Bloom RoomA $70 annual or $7 per month subscription to our Substack provides you with access to live sessions, design tutorials, a members forum and more, see details here.

  • Make a purchase of plants or seeds from our Nursery or Online Store 

  • Joining us for one of our Practical Courses or Online Courses

  • Comment, like, and share our content on social media.


---------------------------------------------------------------------------------------------------------------

We offer a diversity of plants and seeds for permaculture, forest gardens and regenerative landscapes including a range of fruit and nut cultivars. We Deliver all over Europe from Nov - March. - Give a happy plant a happy home :)


Our Bio-Nursery - Permaculture/Polyculture/ Regenerative Landscape Plants 



Web References
  • Bee Foraging Research -  http://www.buzzaboutbees.net/foraging-range-of-bees.html
  • Bee Nesting Sites -  http://www.xerces.org/wp-content/uploads/2008/11/nests_for_native_bees_fact_sheet_xerces_society.pdf
  • https://nature.berkeley.edu/kremenlab/wp-content/uploads/2014/03/Bee-Foraging-Ranges-and-their-relationship-Greenleaf-WIlliams-Winfree-Kremen.pdf
  • file:///C:/Users/User/Downloads/Alnus_cordata.pdf
  • Edible Forest Gardens, Vol. 2: Ecological Design And Practice For Temperate-Climate Permaculture by Dave Jacke , Eric Toensmeier
  • https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/british-trees/native-trees/hazel/
  • http://www.countrysideinfo.co.uk/devon_bap/primrose.htm
  • http://www.balkep.org/plant-profiles.html

6 comments:

  1. Thanks for the article! It is really inspiring!

    ReplyDelete
    Replies
    1. Hi Katya, tx for the feedback , great to hear you enjoyed it

      Delete
  2. Great Article very inspiring. How far apart would you plant Cornus mas from Corylus avellana. I'm thinking about 5m?

    Thanks

    ReplyDelete
  3. Thank you for the knowledge passed, knowledge is power

    ReplyDelete