Wednesday, 10 May 2017

Word from the Polyculture Study 2017 - Update 2

It's been a warm and wonderful spring here and with the help of our amazing team of volunteers we've been making great progress in the gardens. We welcome Chris Mallorie, Abi Ryder and their son Ed to the team, and a short but sweet visit from Chris Kirby-Lambert who has been checking out the invertebrates in the gardens as part of our biodiversity study.

The Team 

So here's what we've been up to since the last post.

In the Market Garden 

The focus this week has been on planting out, taking advantage of the cooler weather and rainy periods that provide great conditions for new plants to settle in.

Tomato plants going in. This year we lost our tomato seedlings to windy weather so have purchased plants from the local market and neighbours 

This year we decided to grow the majority of our warm season crops in flats. The main reason for this decision was that during the last two seasons we experienced some prolonged cool and wet periods during the spring and many of our bean and squash seeds sown directly rotted in the ground. The results are pleasing so far, with the germination rates in the flats well above 70% and the monitoring process made easy by all the seedlings being in a concentrated area.

Beans, squash and corn started in flats ready for transplanting

Some crops such as turnips, swedes, parsnips, beetroots and carrots really don't appreciate being moved, so we sow these directly into the beds. Below you can see a strip of a bed cleared for sowing turnips that will benefit from the shade cast by the Paulownia tomentosa tree saplings. The Paulownia serve as "living shade umbrellas" and also provide good quantities of mulch for the beds, and being nitrogen fixers should not be competing with the crops.

Ares - Paulownia tomentosa grown as living umbrellas and mulch makers with Parsley on the left in the 2nd year, kept cut short to prohibit flowering. On the right of the Paulownia you can see a line of turnips just sown. We'll also add some dwarf beans into this polyculture at a later date.

Other crops such as kale, broccoli, kohlrabi and chard come out of their seedling beds and are transplanted into the main beds.  

Seedling bed - Crops are sown densely into 6 x 1.2 m bed undercover in March and transplanted into their permanent positions when they are approx 15-20 cm tall in May 
There is not too much produce coming out of the gardens in April. Garlics sown in November can be harvested green and are always a favorite, and our perennial vegetables do contribute a significant amount of produce for the home kitchens. Plants such as Asparagus - Aspargus officinalis , Garlic Chives - Allium TubersosumWalking Onions - Allium cepa proliferum,  Turkish Rocket - Bunias orientalis , Parsley - Petroselinum crispum (biennial) and local plants such as Heracleum sphondylium - Hogweed and Ficaria verna - Lesser Celandine (needs cooking otherwise poisonous) to name but a few are all reliable edibles from March onward.

We could have a lot more coming out by growing under tunnels but we don't do this for a number of reasons;
  • At the beginning of the season we are really busy in the bionursery sending plants out to customers and preparing plants for the following season.   
  • The wind seems to be very much against the idea and we don't have a suitably protected place to set up a tunnel (glass house is currently too expensive) 
  • Our market for vegetables is very small (but growing) and it does not make economic sense to invest in earlier production at the moment.
Saying that, as our customer base grows it seems almost inevitable that we will find a suitable spot to set up a few tunnels in the future.

Green Garlic and Parsley

In the Forest Garden 

Perennial Vegetable Polyculture Bed 

In order to step up the perennial vegetable production we established a new bed in the forest garden planting a combination of Asparagus, Chinese Chives and Strawberry. We'll add an Echinacea purpurea trim around the edge and a few Loganberry bushes in the near future.

Here's how we set up the bed:

  • First step we cut the existing vegetation down and piled it next to the bed for mulch. We wait until mid spring before cutting the existing vegetation especially if it consists of hollow stems used by beneficial insects to lay eggs in. This gives the eggs a chance to hatch and move on to do their work in the garden. 

Gabriele cutting the existing vegetation down to ground level with a machete, the perfect tool for the job. 

  • Next we forked over the area to relieve compaction and remove deep rooted plants that will easily grow through a mulch and following this we tilled the area with a Rototiller . We could have applied sheet mulch directly on top of the existing vegetation and planted in the autumn, but we had Asparagus seedlings that needed planting out so decided to go this route instead. There will probably be more weeding to do in the first year this way and we will loose some of the great natural soil structure, but it will recover by this time next year and this will be the last tilling this bed sees for a 1/4 of a century if not longer. The bed area is already quite fertile as it has been fallow for the previous 5 years with regular harvesting for hay, so we did not add any blanket application of compost. 
Area rototilled using a Honda Mantis handheld machine. It took around 2.5 hrs and 300 ml of fuel to clear the area . The large clods with roots were removed by hand as they quickly clog up the tiller. 

  • We then established the access and water channels which consist of paths/irrigation channels on either side of the bed and two keyhole paths in the wider sections of the bed. The bed is kinda pear shaped (literally). We are flood irrigating this bed using a diverted mountain stream that runs along the pathways. Capillary rise draws the water into bed and gravity draws the water down. With the keyhole paths in place we can expect thorough infiltration of water into the bed and around the roots of the plants.

Keyhole path ways to enable access into the center of the wider sections in the bed and to allow water to permeate into this wider section

  • Next step is planting out. The asparagus were spaced approx. 45 cm apart and Chinese chives were planted in between the asparagus on the south edge of the bed. We then placed strawberry runners among the asparagus, the idea being to provide a ground cover and bee fodder but I'm sure we'll get a few strawberries too :)  The shallow rooted strawberries (no more than 20 cm) should not compete with the deep rooted asparagus, the roots of which may reach depths of up to 2m. The garlic chives root in clumps around 30 - 40 cm deep. 
Chris planting out the Asparagus 

  • Finally we top dressed each asparagus and Chinese chive with 2L of compost, watered each plant well and mulched in between the plants. 
2L of compost added around the base of each plant, watered well and straw mulch applied 

All in all it took around 5 hrs for 4 of us to prepare and plant this bed and we can expect a supply of food for probably the next 25 years. With some weeding each year and irrigation applied during dry periods it seems like time well spent :)

Frost Damage in the Forest Garden

A cold snap in mid April caused some damage to fruit blossoms in the forest garden and to the new herbaceous growth on the Paulownia trees but it looks like many of the fruit trees had already been successfully pollinated and fertilised before the cold weather hit. Sub zero temperatures during the blossoming phase can destroy the sexual organs of the plants and destroy the pollen grains reducing fruit set considerably, and in some cases absolutely. Selecting cultivars that flower after the last expected frosts in your region can safeguard against this. We are growing early, mid and late flowering/fruiting cultivars of most of our fruit trees so each year regardless of weather anomalies we can be sure we have some fruit.

Necrotic patches on the Paulownia tomentosa caused by a cold snap in mid April. New leaves soon emerge and no serious damage is done.

Entomological Survey

It was a pleasure to be joined by Christopher  Kirby-Lambert in early May. Chris a self employed ecological surveyor has been looking at the range of the invertebrates we have in the garden mainly focusing on bees and beetles. 

Chris checking the sweep net.
We're hoping Chris will help us establish a methodology for a multi year survey to shed some light on how our garden practices are influencing biodiversity and vice-versa. Chris spent time surveying  our 4 year old market garden and the new perennial polyculture trial garden we started to develop this year - Ataraxia. We're looking forward to seeing the results.      

A selection of bees from the garden  

Comfrey 'Bocking 14' trials - The first cut of the season  

We are experimenting with growing  Comfrey 'Bocking 14' in the market garden for mulch and liquid fertiliser. Last year we started to weigh the annual harvest from our 13 m2 trial bed .

Graphical Representation of the Comfrey Trial Patch 

You can read about the last year's trials and the results here  and if you would like to find out how to set up a comfrey patch check out our post here.

The Comfrey Patch 

The first cut this year weighed in at 20.40 kg from 13m2. The results this year are taken from a sample of 14 plants, the average weight of one plant is calculated from the sample and multiplied by 42 (the total number of plants in the bed). This is a decrease from last year's 1st cut of 23.39 kg. The only fertility the bed has received since we began records is from grass trimmings and the leftover sludge from making comfrey tea (comfert).

Other Stuff

We've also been busy installing ponds in our new perennial polyculture trial garden as well as in Catherine Zanev's Permaculture Farm in North Bulgaria. You can read more about our pond installations in this blog post here.

Wildlife ponds - Balkan Ecology Project 
At the beginning of the year we completed a design for Teresa and Paulo in Portugal and you can read about that process and an overview of the design here

 If you appreciate the work we are doing you can show your support in several ways.


We offer a range of plants and seeds for permaculture and forest gardens from our plant nursery including a range of fruit and nut cultivars. Delivery to all over Europe available from Nov - March

The Bionursery

Want to get involved in the project? We are offering 1 - 6 month positions on our polyculture study.

Permaculture and Regenerative Design Internships 

Tuesday, 2 May 2017

Regenerative Landscape Design for a 28 ha Site - Beja - Portugal

Last summer I was contacted by Teresa Silva and Paulo Matos who having purchased 28 ha (70 acres) of land in Beja, Portugal are looking towards establishing a regenerative enterprise/homestead on the property.

Tojiera Final Concept Design - Illustration by  

The brief was to analyse the site and identify the potential of the land for future regenerative development. As always it was a pleasure to be working with Georgi Pavlov - on this project.

Property Location in South Portugal 

During this blog I'll go through our broad design process and then present the design concept we came up with for this site.

Where to Start?  

The process starts with a conversation with Teresa and Paulo to gain an understanding of their circumstances and to establish their broad objectives. This is followed up with a questionnaire for them to complete in their own time in order to gather more details about the land and their lifestyle. This information is used as a starting point for deeper research and to clarify the design objectives. 

A lot of detailed information regarding climate soils and flora we desktop research. We order a digital terrain model of the site at 1-2 m resolution which provides an accurate representation of the topography. (see below for DTM suppliers) 

From the DTM we extracted slope, aspect, elevation, water flow and topography data and exported these to layers on Google Earth.  This is a great way to quickly overview the site and identify extremes in the landscape.

Data extracted from the DTM 

The next step is identifying the site potential for water harvesting, locating optimal locations for reservoirs/ponds and riparian zones and putting in place access routes within the landscape. The main vehicular access for this site was already well established so we stuck with the existing tracks or slightly modified/extended them. This results in a landscape divided into various zones. We then take each zone and analyse it further as separate unit of design.  

Below you'll find a list of these zones and a brief description of the potential cultivation practices or other uses we selected for them.

Broad site zones and potential design elements within those zones

Residential Zone

Teresa and Paulo already had plans for a house and the location selected and we added other elements into this zone based on their requirements for a kitchen garden, animal housing, recreational/learning areas and field crops.

House and Surroundings - The house, car parking, children's play area, outside kitchen, herb garden, decorative planting schemes, farm building to store tools/machinery/produce/materials and animal housing with space around the structure for material storage.

Fields - The fields can be used for biomass production for use as mulch within the orchard and market gardens, grain production and pasture for animals.

Forest Garden - A diverse mix of perennial plants that can provide fruits, nuts, herbs, medicine, materials, a place of relaxation and learning, and wildlife habitat.

Coppice - A semi wild area used for growing trees that can be used for firewood, fencing materials, garden supports etc

Living Fence - A hedge around the east and west boundaries of the area can provide privacy and security as well as habitat for wildlife and produce for the farm.

Ponds/Reservoirs - Water harvested from the roofs, tracks and surface runoff during storm events can be stored open in ponds or closed in tanks.

Kitchen/Market Garden - This area is suitable for a polytunnel, a greenhouse and raised beds for crop/mulch/fodder production. Fowl can be integrated into this area using mobile coops to fertilise the beds and build soil.

Orchard Zones

Another objective was to grow fruit crops for market and plans were already available from a local agronomist for monoculture almonds and pomegranates on a grid layout.

Guided by the topography of the site, we established a planting pattern that encourages an even distribution of rainfall (i.e surface runoff) across the site, reducing erosion and the occurrence of dry and wet areas.

On the left the Keyline Layout and  on the right an illustration of how tree rows would look on such a layout.

We selected a 6 m x 6 m planting scheme for the orchard in order to support  rootstock and cultivar selection that are less water needy, show higher resistance to pests and diseases and need less nutrient inputs whilst still providing high yields. A 6 m x 6 m layout also allows space for the inter planting of nitrogen fixing shrubs and pollination support species, and requires less water than a more intensive planting scheme.

Example of orchard planting scheme showing placement of nitrogen fixing shrubs and pollination support islands

Orchard Zone - Pomegranate

Primary Crop - Pomegranate Trees spaced at 6 x 6 with intercrop of nitrogen fixing shrubs planted between trees. 2 - 3 cultivars required for optimal production.

Intercrop - Nitrogen Fixing Shrubs for pruning, biomass N input, and pollinator attractant. For more on Nitrogen fixing species for agroforesrty systems see our previous post here 

Secondary Crop Citrus - Citrus trees share similar soil and nutrient requirements as pomegranates and can be planted in alternate rows (subject to production goals).

Pollination Support Islands - Wildflower island that encourage pollinating insects around the trees can be sown between the tree crops in every 10th row.

Remnant Olives - Old olives trees that match up with the planting pattern and do not obstruct the new layout can be left for beneficial habitat and diversity - up to 8 trees.

Alley Cropping Silvopasture - Poultry can free range in the orchard during the spring and autumn when herbaceous growth is lush to help control weeds and fertilise the trees. Concentrating the flocks in paddocks with electric fencing will encourage better weeding and fertility inputs.

Orchard Zone - Almonds

Primary Crop – Almond trees spaced at 6 x 6 with intercrop of nitrogen fixing shrubs planted between trees. 2 - 3 cultivars required for optimal production.

Secondary Crop Fig - Some of the rows can be planted with fig cultivars to break up the monoculture of peach and add a further crop to production.

- Nitrogen Fixing Shrubs for pruning biomass N input and pollinator attractant. For more on Nitrogen fixing species for agroforesrty systems see our previous post here 

Pollination Support Islands - Wildflower island that encourage pollinating insects around the trees can be sown between each tree every 10th row.

Remnant Olives - Old olives trees that match up with the planting pattern and do not obstruct the new layout can be left for beneficial habitat and diversity - up to 8 trees

Alley Cropping Silvopasture - Poultry can free range in the orchard during the spring and autumn when herbaceous growth is lush to help control weeds and fertilise the trees. Concentrating the flocks in paddocks with electric fencing will encourage better weeding and fertility results.

Riparian Zone

Biomass Production - Aquatic grasses grown for mulch for use in orchards and market garden.

Ponds - A series of stream fed wildlife ponds for general ecosystem support and biomass production.

The riparian zone on the site flanks an ephemeral stream    

Fowl - Geese and Ducks can be kept in this area.

Forestry - Wetland timber/biomass/fodder trees.

Beneficial Habitat - Habitat for pest predators, cover for nesting birds

Wild zone - Portion of land left to naturally succeed.

Managed Succession - Areas of the riparian zone can be managed in successional sequence to optimise the biodiversity associated with each successional stage.

Protected Zone

The areas highlighted below are natural Holm Oak Savannah typical of the region, and are protected zones. Grazing in the protected zones is permitted as is planting of new tree species.

Swales with crops - A series of swales can be established within the wild zones. The swales will better distribute rainfall surface runoff across the slopes, reducing the current erosion and can serve as planting zones to a number of native species that can be used for fodder to free ranging animals.

Apiculture - Native bee trees, shrubs and herbs that provide a succession of pollen and nectar can be planted along the swales to attract a range of pollinating insects that will also help pollinate the main orchard crops. There is also potential for honey production on the site once the plants have established.

Grazing Paddocks - Temporary paddocks can be established on a rotation cycle used for grazing animals. Swale plantations can focus on high value animal fodder crops.

Forestry - Drought tolerant timber/biomass/fodder trees can be planted to fill out the current savannah planting pattern of the protected zones.

Wild zone - Portion of land left to naturally succeed without disturbance.

Beneficial Habitat - Habitat for pest predators, cover for nesting birds.

Managed Succession - Areas of the protected zone can be managed in successional sequence to optimise the biodiversity associated with each successional stage.

Tracks and Boundaries

Tracks - Modify tracks to shed water into cultivation zones or avenue plantings to prevent erosion and increase plant productivity.

Living Fence - Hedging can be established along the non fenced boundaries of the site using drought tolerant native species.

Headlands - Tracks around and within the orchards to allow turning of machinery. 1m wide strips along the sides of the headlands can be sown with perennial herbs that provide nectar and pollen to pollinators.

Water Harvesting Channels - Where rainwater surface runoff is apparent, channels on the sides of the road can be made to divert this water to avenue trees or nearby crops.

Grassy Banks - Earth moved from the excavation of water channels can be used to build mounds that can be sown with native grasses (or allowed to naturally succeed). These mounds are used as nesting sites by a number of species of ground dwelling solitary bees that assist with pollination.

Avenue Trees - Drought tolerant, pioneer (nitrogen fixing) trees can be planted along the access tracks. Can be used for biomass, animal fodder, bee fodder and timber.

Tojiera Final Concept Design - Illustration by  

If you would like to find out more about our design process you can join us for our Regenerative Landscape Design Course coming up this June.

If you appreciate the work we are doing you can show your support in several ways. Make a purchase of plants or seeds from our Bionursery, consider joining us on our upcoming Regenerative Landscape Design Course. You could also donate directly to our Polyculture Project


General Resources 

Here's a list of general resources available online that you can use for initial site analysis. 

Wind Data - Windy TV

Soil Data - Soil Grids 

Climate Data - 

Other Resources 

The Pioneering work of P.A. Yeomans 

Digital Terrian Model - Here's a list of companies that provide DTM. We can also provide DTMs and data extraction for most European countries  so if you are interested please send an email to - with a polygon of your site highlighted on Google Earth  and we'll provide you with a quote.

The Layout Process - Georgi has some great info on his face book page going through step by step the layout process and you can find a range of courses on his webpage

 If you appreciate the work we are doing you can show your support in several ways.